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Abstract. Consumer electronic devices are made by the millions, and
automating their production is a key manufacturing challenge. Fastening
machine screws is among the most difficult components of this challenge.
To accomplish this task with sufficient robustness for industry, detecting
and recovering from failure is essential. We have built a robotic screw-
driving system to collect data on this process. Using it, we collected
data on 1862 screwdriving runs, each consisting of force, torque, motor
current and speed, and video. Each run is also hand-labeled with the
stages of screwdriving and the result of the run. We identify several dis-
tinct stages through which the system transitions and relate sequences
of stages to characteristic failure modes. In addition, we explore several
techniques for automatic result classification, including standard maxi-
mum angle/torque methods and machine learning time series techniques.
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1 Introduction

Screwdriving is one of the most common assembly operations, yet automating the
process has remained difficult despite substantial effort [1]. Since the operation
is so prevalent, even a one percent failure rate in screwdriving can generate tens
of thousands of bad products; yet, a mechanical process will never be flawless.
Therefore, our goal is to instead enable the mechanical system to automatically
identify failures and recover from them. Thus, the system can be made more
robust without additional, more expensive mechanical changes such as tighter
tolerances. In addition, a better understanding of failure classes and of the overall
screwdriving process can motivate alternate strategies for improving accuracy.

In order to explore this strategy for enhancing robustness, we collected multi-
modal, time-synchronized data sets on 1862 screwdriving operations. Using this
data, we identified several stages through which a screw can pass and the success
or failure case to which they correspond. In addition, we explored techniques for
using the sensor data to predict the result of a screwdriving operation. With
this dataset, we can provide a deeper understanding of the failure cases for
screwdriving and provide a structure for a fault detection system.
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1.1 Related Work

Among common assembly methods, screwdriving has been especially difficult to
fully automate [2] due to our incomplete understanding of the underlying process,
particularly the initial mating step [3]. A comprehensive review of screwdriving,
including theoretical fundamentals, tools, control strategies, failure detection,
and industrial applications, is available in several references [4], [5], [1].

Simpler characterizations of screwdriving, such as the torque-angle curve (or
signature) [4], are commonly used to identify the screwdriving process. It has
been used for ISO rotary tool evaluation standards [6], screwdriving control [7]
and failure detection [8], [9], [10] and [11]. Other efforts, such as Giannoccaro et
al. [11], have used an online data acquisition approach to fit a theoretical model
of the screwdriving process. However, we know of no data sets that have been
collected or analyzed to the complexity of the data presented here.

2 Data Collection
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Fig. 1. The instrumented screwdriver station used for data collection.

We have designed an instrumented vacuum screwdriver (Fig. 1) to measure
relevant process parameters. The screwdriver floats on a Z-axis compliant stage,
which holds a motor (Maxon RE-30 with a 1-stage gear) mounted on a six-axis
force-torque sensor (ATT mini40). The motor shaft passes through a bearing into
a sealed chamber and terminates in a Phillips bit. The sealed chamber connects
to the vacuum head, which conforms to the screw head. To acquire a screw,
the sealed chamber is lowered over a screw located in the screw feeder and an
external vacuum source is turned on. The vacuum pulls the screw head against
the bottom of the vacuum head. Once the screw is lowered into its hole, the bit
drops to completely engage the screw.

The screwdriver is mounted on an industrial manipulator (Foxconn Foxbot
A600). A shaker tray to hold screws and an aluminum plate with threaded inserts
are installed in the manipulator’s workspace; the plate is first calibrated on a
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coordinate measuring machine to ensure that the manipulator can precisely align
the screws to the holes.

During each run, the screwdriver first picks up a screw from the shaker tray
using the vacuum system. Then the motor turns on, the manipulator moves the
screwdriver to a specified height above the hole, and data collection begins as the
screw is lowered into the hole. During the run, six-axis force-torque data, motor
current and speed, robot position, and video (using a camera mounted on a
second manipulator) are all collected. The run concludes when either the motor
current or the motor angle reaches a specified limit. Finally, the screwdriver
returns to its starting height and proceeds to the next run.

For about half of the collected data, the process above was unaltered. For
a quarter of it, a position offset sampled from a Gaussian distribution was in-
troduced between the screw and hole axes. For the final quarter of the data,
a Gaussian angular disturbance was introduced, and the whole apparatus was
rotated about the screw tip to simulate an axial misalignment with the plate.

We collected a total of 1862 screwdriving runs. Each run consists of six axes
of force and torque, motor current and speed, and video data, all synchronized
in time. In addition, each run has been hand-labeled with the stages through
which the operation progresses, as determined by subsequent review of the data,
and with its result class (see below for detail). This dataset forms the largest
collection of screwdriving data that we know of, and it provides a variety of
insights into how the screwdriving process works.

3 Analysis

Examining the captured force-torque signature and video data, we empirically
came up with a list of stages and result classes. The result classes correspond
with outcomes common in previous studies [4] [12] with additional classes added
to represent less-studied outcomes. These stages required human judgment to
identify, and alternate characterizations are possible; however, they provide use-
ful information for understanding how the screwdriving operation proceeds. The
result categories are listed in Table 1, and the stages in Table 2. Conceptual
force-torque signatures for a few examples are shown in Figure 2.

One way to visualize the stages and results of the collected data is by con-
sidering the state transition graph, which appears in Figure 3. Vertices repre-
sent stages through which the screwdriving operation passes, with the terminal
states corresponding to result classes. Vertices and edges are weighted, colored,
and sized according to the number of runs that pass through them. From the
figure, it is clear that all runs begin at the approach stage. The successful runs
then proceed through initial mating, rundown, and tightening; some of them pass
through hole finding either before or in place of initial mating. The failures, in
contrast, are highly varied in their stages. The most common failure, the failure
to acquire the screw for insertion before the process even begins, goes only to
the no screw spinning stage before completion. This abnormally high pick-up
failure occurs because the vacuum adapter in our screwdriver is not optimized
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Table 1. The result classes used when classifying each screwdriving run, along with
descriptions and percentage of total runs with the corresponding label.

Result Description Freq

Success Screw successfully driven into hole and tightened — 84.4%

No screw Failed to acquire screw 9.7%

No hole found Screw acquired but never dropped into hole 2.6%

Crossthreaded Screw entered hole but threads crossed so current 1.8%
limit hit before rundown completed

Stripped Screw successfully run down into hole but bit slip- 0.8%
page prevented full tightening

Partial Screw driven partly into hole but time limit reached 0.3%
before operation completed

Stripped (no engage) Screw was so stripped it never engaged hole 0.4%

Table 2. The stage labels used when classifying each screwdriving run, along with
descriptions and percentage of total runs with the corresponding stage. As each run
passes through multiple stages, stage percentages do not sum to 100%.

Stage Description Freq
Approach Screwdriver approaches and touches plate 100.0%
Hole finding Screw has touched plate but not yet fallen into hole. 45.1%
Initial mating Driver moving down and fully engaging screw 87.0%
Rundown Screw is engaged and spinning into hole 86.4%
Tightening Driver applies torque to tighten screw against plate 78.3%
No screw spinning  Bit is spinning with no screw present 9.8%
Screw fallen Screw has fallen off of bit 1.6%

Stripped engaging Screwdriver attempts to engage screw but bit slips  0.3%
against screw head.

Stripped rundown Screwdriver attempts to run down screw but bit slips  0.4%
against screw head.

Stripped tightening  Screwdriver attempts to tighten screw but bit slips  0.8%
against screw head

for the screws used in the experiments. Another important feature to note is
that, except for the crossthread failure, all result cases pass through distinct
stages before completion. Thus, a complete list of the stages that the operation
undergoes is almost completely sufficient to predict the result, suggesting that
it is possible to build a failure prediction and avoidance system to anticipate
impending failures and take appropriate behavior to avoid them.

In addition, the stages provide a deeper understanding of the underlying op-
eration, which can be applied to identify process failures that would be missed
through simple result classification. For example, the hole finding stage, in which
the screw walks on the part searching for the hole, may be problematic since it
damages the finish near the hole; however, a simple result classifier such as that
described in the next section is unable to differentiate between successful runs
that include a hole finding stage and those that do not. Furthermore, examin-
ing this stage can provide information about the mechanical mating procedure
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Fig. 2. Conceptual force-torque signatures of (a) successful and (b) unsuccessful (cross-
threaded) screwdriving runs.

between the screw and the hole, such as the effect that the compliance of the
screwdriver has in the screw mating procedure; additional work is required to
explore this relationship.

4 Failure Detection

4.1 Basic Failure Detection

The simplest method of classification, and the most common method, uses two
features: the final torque applied to and angle traveled by the screw at the
time of cutoff [4] (see also [8], which uses the maximum insertion force rather
than the driving torque). To provide a benchmark for advanced strategies, we
started by classifying the data using only these features. The maximum angle
was determined by the encoder counts from the end of the “approach” phase
to the cutoff point, and the corresponding torque was determined by linearly
interpolating the torque curve at the time of the cutoff.

We classified the data using multivariate logistic regression. With 10-fold
cross-validation, this method produced an overall error of e = 0.03; with a train-
ing error es.q;n = 0.03, the overfitting is negligible. A scatter plot, with decision
bounds marked, and the confusion matrix for this classifier appear in Figure 4.
This classifier works well for identifying several important result classes. It iden-
tifies success and crossthread nearly perfectly, and it also does moderately well
at moscrew. Since the method so accurately detects the success case, it is an
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Fig. 3. State transition graph summarizing the stages and results of all data. Colors

and sizes are scaled logarithmically with the number of runs in each transition, stage,
or result.

appropriate method to use when the mode of failure is irrelevant. However, this
method works poorly when distinguishing among failure cases, especially those
that are not crossthread. The scatter plot indicates that this problem is not the
fault of the classifier choice; while success, crossthread, and to a lesser extent
noscrew are all linearly separable, the rest of the failure cases are all closely
grouped together in this feature space. In fact, the classifier has a 0% success
rate when classifying the more obscure result categories. In order to distinguish
between these failure cases, we must use more sophisticated features.

4.2 Multivariate Temporal Models for Failure Detection

We have also tested the utility of a more sophisticated machine learning approach
to identify and predict failures. For this, we relied on eight time series (3-axis
measurements of each of the force and torque, as well as 1D measurements of
motor current and motor speed), each sampled at 100Hz. We first preprocessed
the data using the Honey [13] tool. For each time series, we derived time series
of simple statistics including simple moving average (sma), moving standard
deviation (sd) and moving range of values (range) using time windows of aggre-
gation 0.1, 0.2, and 0.3 second wide. We also extracted “peak events” from each
of the raw series, as well as their corresponding moving averages, moving stan-
dard deviations, and moving ranges. A peak is defined as an instantaneous event
occurring when the first order time derivative of a signal (estimated with trian-
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Fig. 4. Results of logistic regression using maximum torque and total rotation angle

gular kernel) changes its sign. Depending on the sign change direction, a peak
can be “up” (change of trend from positive to negative) or “down” (negative to
positive). Each peak event is labeled with a time stamp, its direction, and the
value of the second order time derivative of a signal to reflect the rate of trend
change (informally reflecting the “strength” of a peak). Such peak features are
simple but often effective at representing dynamic aspects of temporal data. The
resulting featurization includes the raw input time series, their moving averages,
standard deviations, moving ranges, and two types of peak events, combining
into 144 temporal features in total.

We use the Graph of Temporal Constraint Decision Forest (GTC-DF) algo-
rithm [14] for the classification of the screwdriving runs. GTC-DF is a machine
learning algorithm designed for classification of Symbolic and Scalar Time Se-
quences (SSTS), an extension of the familiar multivariate time series paradigm
to include asynchronous discrete events in the representation of data. Unlike
conventional machine algorithms that require temporal data to be featurized
and transformed into a transactional form of a flat table with rows representing
the subsequent discrete time stamps and columns representing various features
derived from data at the corresponding points in time, GTC-DF can consume
time sequence data directly and learn models that reflect the temporal structure
of data in a more natural fashion. At its core, GTC-DF infers a decision-tree-like
structure from data, each node of which represents a specific Graph of Temporal
Constraints [14].

To ensure robustness of the reported results, and for consistency with the
basic classification above, we used 10-fold cross-validation to score performance
of GTC-DF. Of the 1862 runs, it was able to correctly classify 1844 runs as
success or failure (average error rate of 0.0097), and 1841 when predicting the
exact type of failure (0.0113 average error rate). The obtained AUC (Area Under
the ROC [Receiver Operating Characteristic] Curve) ranges between 0.99920 and
0.99992 with 95%-ile confidence. These results yield a 3-fold improvement when
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compared to the basic classification performance reported above, and illustrate
the value of using a natively temporal approach to model temporal sequence
data. Training the GTC-DF model took on average 15m4s on an 8-core i7-3770
3.40GHz computer with 16 GB of main memory. Once GCT-DF is trained,
applying it takes an average of 7ms per screwdriving run.

Trained GTC-DF models may contain hundreds of decision tree-like struc-
tures and thousands of temporal constraints graphs, making them impossible to
fully interpret by a human user. But in practice, we can often heavily constrain
the complexity and select only a few representative components of the GTC-
DF collection inferred from data to avoid overwhelming the end users, while
maintaining useful model accuracy.

GTC #1 [ GTC#2

current:sma[0.5] _peak_up forcez:sma[0.1]<6.63

[1.078,1.533]
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forcez:sma[0.2]_peak_up torquey:range[0.1]_peak_up

Fig. 5. Two examples of GTC models inferred from data under limited complexity. The
specific model design and parameters indicated here were determined algorithmically
to be a simplified model that aligns most closely to the results of the full model.
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Table 3. Classification results on test data using the pair of GTCs shown in Figure 5.
Cells summarize distribution of failures and successes (x%:y%) and percentage of runs
covered (in italics).

Not GTC #2 GTC #2
100%:0% 0%:100%

GTC #1 7.487% 2.674%
0%:100%  50%:50%
Not GTC #1 o0 79 1.067%

Figure 5 shows two example GTC models of purposely restricted complexity.
Each of them defines a Boolean condition on time series: it is true if the model
matches current data, and false otherwise. Oval nodes in the diagrams represent
existential conditions on the events. Edges between oval nodes represent tempo-
ral constrains between them. Rectangular nodes reflect inequality conditions on
time series values at the time of their parent oval node application. Label X:Y
of each node denotes a raw or a derived signal, where X denotes the sensor type
(current, speed, force or torque), and Y reflects the type of preprocessing ap-
plied to it. For example, “current:sma|0.3]_peak[up]” refers to a peak in the 0.3s
simple moving average of the “current” time series. More explicitly, GTC #1 in
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Figure 5 evaluates as true if at time ¢ during a run “the 0.5s moving average of
motor current peaks up at time t, followed, between 1.078s and 1.53s, by a peak
up of the 0.3s standard deviation of the force measured along the x-azis, and if
the moving average of the force along the z-axis over the past 0.1s stays below
6.63 at time t, and if the strength of the last peak of the 0.2s moving average of
the force along the z-axis measured at t is greater than 5.67.” Note that all the
numeric parameters represented in the graph have been automatically inferred
from data by the GTC-DF algorithm. Note also that the resulting model is truly
multivariate: the example graph simultaneously uses motor current and two vec-
tors of force, via their specific statistics that have been found informative by the
learning algorithm. Finally, note that the model can be read in plain English and
it represents a fully interpretable logical statement of reasonable complexity.

Table 3 shows classification of screwdriving runs represented by the four pos-
sible combinations of the two example GTC models. This table only reflects
the test data runs (training data not included in statistics). If the GTC #1 is
matched by the current data but the GTC #2 is not (upper left cell of Ta-
ble 3), this always yields a successful screwdiving run. This logical combination
of applicability of GTCs #1 and #2 covers almost 7.5% of runs. Similarly, we
can read that if both GTCs match the data, all such runs are failures and this
reflects 2.674% of all data (upper right cell in Table 3). Whenever neither of the
GTCs is matched, we get another clean cut determination of the run outcome
(lower left cell), but when #2 is matched while #1 is not, we observe a 50-50
split of possible outcomes (lower right cell). Note that even though the only con-
fusing combination of applicability of the two example GTCs applies to a very
small fraction of all data, this data can be further disambiguated by including
additional GTCs into the set. Empirical 10-fold cross validation performance
of the simplified model yields an error rate of 0.0118 which is slightly higher
than that of the full model (0.0097) but still substantially lower than the simple
classification model presented in Section 4.1 (0.03).

5 Conclusions and Future Work

In this research, we collected a large data set of screwdriving operations to
identify failure cases and stages of the process. Using this data, we have demon-
strated that the collected signatures can be used to classify the result a run with
high accuracy using a sophisticated learning strategy. Accurately classification
of failures enables us to pursue a fully integrated failure detection and recov-
ery system, with recovery strategies dependent on the specific failure case. Our
overall classification accuracy was near 99%, significantly improving upon the
baseline success rate of 84.4% for our setup and suggesting that failure detection
and recovery can indeed improve industry manufacturing systems.

The work here also suggests additional strategies for improving the failure
detection and recovery system. The state diagram in Figure 3 shows that it may
be possible to predict incipient failures and prevent them before they occur.
Augmenting the classification system to model prediction confidence along with
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failure type may improve the overall accuracy of the system. Additionally, the
understanding of the underlying screwdriving process provided by the stages
and failures identified here can motivate future development of the mechanical
screwdriving device. We also intend to test the robustness of the stage and result
lists and classification strategies presented here by collecting additional data sets
with different setups, varying screw size, compliance, and other factors. All of
these results will enable enhanced robustness of automated screwdriving systems
for industrial use.
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