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Abstract—We built an instrumented screwdriver stage to detect
categories of failures not previously documented and to record
their sensor information for future prediction. Our data collection
process was arduous, relying on manual resets and data labeling,
but the low incidence of failure in the operation required a large
number of runs. Furthermore, the data collection process itself
damaged the screws and affected the results. We intend to design
another collection process with more automation to gather more
and better data.

I. INTRODUCTION

The study of automated robot screwdriving provides a
useful sample application for exploring general manipulation
ideas. Not only is the application relevant, since screwdriving
operations make up a significant fraction of all assembly oper-
ations, but screwdriving itself is a mechanical operation simple
enough to model straightforwardly but complicated enough
to admit interesting behavior. Two helices in sliding contact
demonstrate a variety of interactions and failure modes, and
techniques used to understand their behavior can generalize to
other, more sophisticated operations.

The study of screwdriving has historically focused on only a
handful of failure modes. Screwdriving suffers from the same
wedging and jamming failures that peg-in-hole assembly does,
with the addition of cross-threading (see e.g. Nicolson and
Fearing [3]). Research efforts to detect failures (e.g. [2]) have
focused only on these few cases. However, when a system
is actually deployed, numerous other failure modes occur.
In order to identify these failures, we built an instrumented
screwdriving stage and collected over 1800 screwdriving
operations[1]. During the process, we encountered a variety
of data collection challenges that are worthy of discussion.

II. DATA COLLECTION

To collect the data, we built an instrumented screwdriving
setup, equipped with a camera, six axis force/torque sensor,
motor current and speed monitoring, and vacuum system for
screw acquisition and holding (see Fig. 1). Screws were pre-
sented for acquisition in a shaker tray fixed in the workspace,
and installed into a plate made with 100 screw inserts. Data
was collected in batches of 100, with the screws removed and
returned to the shaker tray by an operator after every batch.

Following the data collection, each run was manually ex-
amined (using the video and the data traces) to classify it into
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Fig. 1. The instrumented screwdriving station, drawn from Aronson et al.
[1].
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Fig. 2. Illustration of the force/torque traces for a success case and a cross-
thread case, drawn from Aronson et al. [1].

one of several emergent failure categories, and the run was
also divided into its component stages. The failure type is
straightforward to determine from the data traces; see Fig. 2
for samples. We extracted seven distinct failure modes and
ten distinct intermediate stages, from which we computed a
process model (Fig. 3).

III. DISCUSSION

The overall success rate of the screwdriving operation was
quite high, with about 85% overall success rate, and 10% of
the remaining 15% failures came from failing to acquire a
screw at the beginning of the operation. Therefore, the most
interesting failure cases were confined to only about 5% of all
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Fig. 3. A markov process model of the collected screwdriving data, drawn
from Aronson et al. [1].

collected operations. This “long tail” problem demonstrates the
difficulty of exploratory data collection: discovering the rarer
cases requires exponentially more data. Contributing to the
difficulty was the fact that our first data collection process was
highly manual. The screws were removed and reset manually,
which required significant human intervention approximately
every 45 minutes; the data was labeled manually, which took
about 20 person-hours of work. While this manual process
did manage to reveal more distinct failure categories than
previously documented, nevertheless the number of incidences
of each (the fewest occurred only five times) is not sufficient
to perform full characterization and prediction. Thus, we are
investigating additional automation of the process for our next
data collection pass.

The collection method also influenced the data itself in
unexpected ways. For example, repeated use of the same
screw wore down the threads, potentially leading to additional
failure modes caused by weakened threads and debris in the
workspace (see Fig. 4 for an example). Industrial assembly
setups rarely reuse screws, so the failure modes caused by
this wear were not necessarily representative, either in type
or quantity, of failures typical to the process. The specific
details of our setup introduced these failures and enhanced
their probability.

Furthermore, our lack of automation made these failures
difficult to categorize. In particular, if we automated the screw
removal and reset process, we would be able to track individual
screws across multiple operations, and annotate each failure
with how many times the screw had previously been used.
Not only does increased collection automation enable more
data to be taken more easily, it can even enable collection
modes that are otherwise difficult to collect.

Fig. 4. A worn screw. Note that the final few threads above the hole are
much less well defined than those further up the shaft.

IV. CONCLUSIONS AND FUTURE WORK

We are in the process of designing a new data collection
experiment that will incorporate more automation and tracking
to better isolate different error causes. The first collection
process successfully identified a number of failure classes, but
it intrinsically caused additional failures and failed to account
for them. We can improve it to collect more and better data.
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mura, Oussama Khatib, and Gentiane Venture, editors,
2016 International Symposium on Experimental Robotics,
pages 244–253, Cham, 2017. Springer International Pub-
lishing. ISBN 978-3-319-50115-4. doi: 10.1007/
978-3-319-50115-4 22. URL http://dx.doi.org/10.1007/
978-3-319-50115-4 22.

[2] T. Matsuno, J. Huang, and T. Fukuda. Fault detec-
tion algorithm for external thread fastening by robotic
manipulator using linear support vector machine classi-
fier. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 3443–3450. IEEE,
May 2013. doi: 10.1109/ICRA.2013.6631058. URL
https://doi.org/10.1109/ICRA.2013.6631058.

[3] E. J. Nicolson and R. S. Fearing. Compliant control
of threaded fastener insertion. In Robotics and Automa-
tion (ICRA), 1993 IEEE International Conference on,
pages 484–490 Vol. 1, May 1993. doi: 10.1109/ROBOT.
1993.292026. URL https://doi.org/10.1109/ROBOT.1993.
292026.

http://dx.doi.org/10.1007/978-3-319-50115-4_22
http://dx.doi.org/10.1007/978-3-319-50115-4_22
https://doi.org/10.1109/ICRA.2013.6631058
https://doi.org/10.1109/ROBOT.1993.292026
https://doi.org/10.1109/ROBOT.1993.292026

	Introduction
	Data collection
	Discussion
	Conclusions and future work

