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Abstract— Assistive robot manipulators help people with up-
per motor impairments perform tasks by themselves. However,
teleoperating a robot to perform complex tasks is difficult.
Shared control algorithms make this easier: these algorithms
predict the user’s goal, autonomously generate a plan to
accomplish the goal, and fuse that plan with the user’s input. To
accurately predict the user’s goal, these algorithms typically use
the user’s input command (e.g., joystick input) directly. We use
another sensing modality: the user’s natural eye gaze behavior,
which is highly task-relevant and informative early in the task.
We develop an algorithm using hidden Markov models to infer
goals from natural eye gaze behavior that appears while users
are teleoperating a robot. We show that gaze-based predictions
outperform goal prediction based on the control input and that
our sequence model improves the prediction quality relative to
gaze-based aggregate models.

I. INTRODUCTION

Assistive robot manipulators help people with upper motor
impairments accomplish activities of daily living [1]. How-
ever, manipulator arms are hard to control: users must over-
come non-intuitive kinematics and limited input interfaces to
achieve the precision required for manipulation [2]. Shared
control is one approach to overcoming this challenge [3],
[4]. These systems work by first predicting what the user is
trying to accomplish. Then, the robotic system autonomously
constructs a plan to accomplish the goal. Finally, the user’s
input command is fused with the assistive command. Shared
control gives users more control over the system than a fully
autonomous approach does while relieving the user of the
complexity needed for direct teleoperation [3].

To be effective, shared control systems must infer what
the operator is trying to accomplish. Existing approaches
infer this goal using the operator’s joystick inputs. These
systems must handle the confusing commands generated by
operators unskilled at controlling the robot. In addition, user
input inherently only gives information about how to make
incremental progress on the task, rather than informing the
system about the user’s ultimate goal.

To improve this goal inference, we can use another signal:
the user’s eye gaze behavior. Psychology research has shown
that what people look at in a scene reflects what they are
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Fig. 1. Overview of the gaze analysis pipeline for goal prediction. While
teleoperating a robot, the user’s natural gaze towards objects in the scene is
collected. This signal is then processed by hidden Markov models trained
on each goal candidate g to assign a probability to each goal.

trying to do, particularly when performing a manipulation
action by hand [5] and by robot [6]. Eye tracking enables
systems to predict people’s subgoal during a by-hand ma-
nipulation task [7] and their next intentions during food
serving [8] and handover [9]. Gaze is especially responsive
to new information, since people move their eyes faster than
they can either move their hands or control a robot.

However, the gaze signal itself is complex to use. Ap-
proaches that use intentional eye gaze (the “gaze as mouse
pointer” model) rely on users providing clear, controlled
gaze towards specific objects. In natural gaze, however, the
signal is less clear. While people often look directly at their
goals, these goal-directed fixations don’t appear reliably.
Goal-directed fixations are interspersed among glances at the
robot end effector [6], as well as blinks, distractions, and
other unexpected behavior. In fact, fixations towards goal
objects make up only 16% of all identified fixations in the
HARMONIC data set [10], which records the gaze locations
of people teleoperating a robot. To enable accurate goal
prediction, we must explore more sophisticated models for
using gaze. In this work, we combine fixation labeling [11],
[12] with scanpath analysis [13] to derive a new approach
for gaze interpretation. Our sequential method outperforms
methods that use joystick input and aggregate gaze methods
that discard information about the order of fixations.

To validate this model, we present a pipeline for using gaze



for goal prediction during a manipulation task (Fig. 1). We
first segment the raw gaze data into individual fixations [14],
then assign to each fixation a label indicating the fixated
object. We then analyze this sequence using two goal predic-
tion algorithms: an aggregate model, which measures how
many fixations are directed at each goal, and a sequential
model, which uses hidden Markov models trained on each
goal to use temporal context for detection. We apply the gaze
algorithms on the HARMONIC data set [10] and compare the
goal predictions from our gaze-based system with existing
models that use joystick input. We find that:
• Both natural gaze models predict the user’s goals faster

and more accurately than the joystick model does, and
• A model using the order in which gaze fixations occur

(scanpath method) outperforms a model that relies only
on counts of object-directed fixations.

II. RELATED WORK

A. Shared Control

Shared control makes teleoperation easier by controlling
a robot using both the user’s input signal and a separate
autonomous system. Typically, such systems represent the
user’s goal as a selection from a finite, pre-specified set of
possible goals (e.g., pre-grasp positions for relevant objects).
The system then calculates a probability distribution over
the user’s possible goals; approaches include comparing the
user’s action to the direction towards each goal [4] and
fitting the action using a maximum entropy inverse optimal
control model [3], [15]. From this goal prediction, the system
develops an autonomous motion command through stan-
dard manipulation techniques. It then fuses its autonomous
command with the user’s direct input according to an ar-
bitration method, such as using goal prediction confidence
directly [4], [16], via a partially observable Markov decision
process [3], or by allowing the user to adjust the level of
control [4]. These systems improve task success rates and
completion times while requiring less user input [3]. While
goal inference has largely used only the user input command,
some work explores other modalities such as brain-computer
interfaces [17] or fusion of multiple sources [18].

B. Eye Gaze for Goal Inference

In many tasks, people’s eye gaze behavior reflects their
intentions [19]. We focus here on using natural eye gaze
to understand the goal of a user during a manipulation
task. Significant psychological evidence (reviewed in [20])
shows that when people are manipulating objects with their
hands, they almost exclusively look at objects relevant to
the task. This top-down model interprets gaze using an
information-gathering framework; people direct their gaze to
acquire information necessary for the task [21]–[23]. The
informativeness of gaze persists during similar activities,
such as teleoperating a robot [6], generating robot demon-
strations [24], or requesting objects from a robot server [8].

Some systems have been presented to predict users’ goals
from their gaze during manipulation [25]. Typically, these
approaches build from raw gaze data from an off-the-shelf

eye tracker (see [26] for a review) to obtain the user’s
gaze location as a pixel on a scene camera. One approach
is to identify the object closest to the gaze location and
call that the goal [27]–[32]. This strategy works in simple
situations, especially when the user is deliberately using their
gaze to indicate an object (rather than natural gaze, which
the user produces unconsciously while performing the task).
However, it assumes that people look only at their intended
goals, which is less true the more complex the task. Other
approaches analyze the raw gaze data directly [33]–[38],
which can work well in differentiating between different
types of tasks, but is relatively poor at identifying the goal of
a specific task [22], [23], [39]–[42]. These approaches often
use custom aggregate features in the gaze data, but some use
sequence-aware models for this identification, in an approach
called scanpath analysis [7], [13], [43].

To combine these strategies, some approaches process the
gaze data to identify individual fixations with objects in the
scene, and then process those fixations with other algorithms.
[44] achieves 86% object prediction accuracy (among trials
with gaze data available) by training a custom support vector
machine based on aggregate fixation features such as the
fixation duration on each object and whether it was the first
object fixated on during a window. [45] uses similar hand-
crafted aggregate features to predict actions in a board game.
[24] uses the relative amount of time spent fixating on each
object to estimate how important each object is in a scene.
We build on these results by using the scanpath analysis
approach to consider the identified fixations in the order in
which they occur rather than in aggregate.

III. PROBLEM STATEMENT

A. Goal Inference

Shared control systems rely on accurately predicting peo-
ple’s goals early in the the task. Formally, specify a finite set
of possible goals G = {g0, g1, · · · , gn}. The goal inference
problem consists of finding a probability distribution p(G)
representing the likelihood that the user is intending to move
towards each of the goals.

B. Benchmark: Joystick-based Prediction

We compare our gaze-based approach to shared auton-
omy [15], [17], [46], which uses inverse optimal control
to infer the user’s goal. This method compares the user’s
observed command a with the optimal command to achieve
each goal. Formally, the user’s planning behavior is modeled
by a family of Markov decision processes (MDPs), each
with a user cost function Cg(x, a) parameterized by the goal
g ∈ G that gives the cost of taking action a in state x Each
MDP is solved in advance to obtain a goal-parameterized set
of action value functions Qg(x, a).

We then assume that a user intending goal g provides
control inputs a at a state x according to the distribution

p(a|x, g) ∝ exp(Qg(x, a)−Qg(x, 0)), (1)

which computes the reward a user with goal g would gain
by producing the observed action in this state compared to



providing no action1. These probabilities are marginalized
over all goal candidates to determine a goal probability
p(g|a, x) at each time as

p(g|a, x) =
p(a|g, x)∑

g′∈G p(a|g′, x)
,

and then accumulated over time using Bayesian combination.

C. Gaze for Goal Inference

In this work, we develop an algorithm for using eye gaze
for goal inference. We collect eye gaze data using a head-
mounted eye tracker, which records images of each eye and
egocentric video. The tracker detects the user’s pupils in the
eye images, then uses its calibration data to report where in
the egocentric video frame the user is looking.

A gaze interpretation pipeline must map this raw stream
of gaze locations to a probability distribution over goals.
There are several challenges in this process. First, the raw
gaze locations are noisy, sensitive to calibration, and include
dropouts due to events such as blinks. Second, the raw pixel
stream does not include context about the task or environ-
ment. To handle these challenges, we use the semantic gaze
labeling representation, which transforms the raw stream of
pixels into labeled fixations.

Another key challenge is that people’s gaze behavior does
not follow exact patterns. Some gaze-based goal prediction
strategies [27], [29]–[32], especially those designed for short
interactions or intentional gaze, assume that people look
directly at their goal at the beginning of the task. However,
in our natural gaze setting, that assumption does not hold.
People do tend to look at their goal objects, but they more
often look at the robot end-effector and the robot body itself.
In the data set used here [10], only 16% of all fixations
were directed towards a goal object. We cannot even assume
that users ever look directly at their goal during the task;
in fact, 10% of trials included no identified goal-directed
gaze. Users may use their peripheral vision or memory of
the scene to localize their goals rather than looking directly
at them. Therefore, more sophisticated techniques that can
handle inconsistent information are required.

IV. PREPROCESSING THE GAZE DATA

Before applying prediction models, we preprocess the raw
gaze data to incorporate task context. First, we segment the
data into individual fixations. Second, we label each fixation
with one of a few pre-specified objects in the scene. This
sequence of labeled, timed fixations is then passed into the
learning algorithms below.

A. Fixation Segmentation

While matching gaze to objects in the scene can be done
frame by frame, the physiology of gaze suggests an easier
approach. Gaze follows specific patterns: people look at

1This equation is given in [15] as p(a|x, g) ∝ exp(Qg(x, a)− Vg(x)),
where Vg(x) is the state value function. The data set [10] alters the
formulation to remove any bias for user inaction: if the user does nothing,
the probability does not update, wherever the robot is located.

Fig. 2. Keypoint labels assigned during semantic gaze labeling. First, each
fixation is mapped to one of the keypoints, which consist of each robot joint
and each possible goal morsel. Next, the labels are grouped, with keypoints
in the same groups indicated by matching markers. Fixations that could not
be labeled accurately were given a group none. The purple star denotes
the user’s current gaze location, which here is labeled morsel 1.

stationary objects (during fixations) or follow moving objects
(during smooth pursuits) [14]. These single-focus spans are
separated by rapid motions (saccades). By first segmenting
the gaze data into individual fixations2, we group together
consecutive gaze points and label them jointly. This step
ensures that assigned labels are inherently smoothed and
provides additional data for labeling.

Fixation segmentation was performed using I-
BMM [47]; software is available at https:
//github.com/HARPLab/ibmmpy. I-BMM calculates
the gaze velocity for each frame, then fits these velocities to
a two-component Gaussian mixture model. Velocity samples
that match the larger component are labeled saccades,
and those in the smaller component, fixations. Consecutive
fixation samples are then merged into fixations.

B. Semantic Gaze Labeling

After individual fixations have been identified, they are
then matched with objects in the scene. This process assumes
that gaze during manipulation tasks is directed at relevant
objects [48]. Furthermore, it requires that scene-relevant
objects are tracked, which our manipulation architecture
provides. We first identify a set of keypoints in the scene as
possible gaze targets. For this task, we chose each robot joint
and each goal morsel (Fig. 2). We manually labeled each
fixation with its most relevant keypoint [49]. For each trial,
we then have a sequence of tuples (st, dt, `t) corresponding
to its start time, duration, and label among a selection of
pre-selected possibilities. This sequence of labeled fixations
is used as input to our learning algorithms.

V. ALGORITHMS FOR GOAL PREDICTION

In this section, we discuss algorithms used for gaze-based
goal prediction. First, we present an aggregate gaze model
which uses only the counts of fixations labeled as goals
and discards sequence information. This aggregate model

2For this analysis, whether or not the object is moving when fixated is not
relevant, so we use fixation to include both traditional fixations and smooth
pursuits.

https://github.com/HARPLab/ibmmpy
https://github.com/HARPLab/ibmmpy


represents methods that only consider goal-directed fixations
and treat other data points as noise. Second, we present a
novel sequential gaze model, which learns hidden Markov
models from the sequences of labeled fixations.

A. Baseline: Aggregate Gaze Method

For gaze-based goal prediction, we take as input the
sequences of labeled fixations derived above. The gaze data
in each trial i consists of a sequence of start times, durations,
and labels (sit, d

i
t, `

i
t) of length ni as input and a reported goal

gi as output. Existing work [27], [29]–[32] uses this signal
by only considering goal-based glances. Typically, the entire
gaze is assumed to be directed only at the goal, and other
gaze information is discarded as noise. Then, they predict
the goal as the one closest to the user’s gaze location.

For this baseline, we use an aggregate probability function
that counts the number of fixations directed towards each
goal. Specifically, we set

pagg(gk|(st, dt, `t)) ∝ exp
T∑

t=0

δ(`t = `gk), (2)

with normalization performed over the three possible goals
gk. Here, δ(a = b) evaluates to 1 if the arguments are equal
and 0 otherwise. This method requires the specification of
`gk , the label corresponding to each goal gk. However, it
requires no training.

B. Sequential Method via Hidden Markov Models

We now present a sequential method which, unlike the
aggregate method, takes into account both the order in which
fixations appear as well as fixations directed towards non-
goal objects. Thus, this algorithm is able to improve on
recognition speed and confidence. Building this model con-
sists of two steps: sequence processing and model learning.

1) Sequence processing: We use a hidden Markov model,
which operates on untimed sequences of categorical obser-
vations. Therefore, the first step is to transform our timed
sequence into an equivalent untimed sequence. A simple way
to do so would be to just drop the timing elements entirely.
However, that method removes information conveyed by the
fixation durations. Instead, we repeat each label a number
of times based on its duration. This untimed sequence is
suitable for use in a Markov model, but its expansion retains
a representation of the fixation durations using repetition
counts.

Specifically, given a sequence q = (st, dt, `t), generate the
new sequence q′ as

q′ = (`0, · · · , `0︸ ︷︷ ︸
N(d0)

, · · · , `i, · · · , `i︸ ︷︷ ︸
N(di)

, · · · , `n),

where each individual label `i is repeated based on a multi-
plicity function N(di). We set

N(d) = clamp(

⌊
d

∆t

⌋
; 1, Nmax),

where ∆t is a fixed time quantization parameter, Nmax is
the maximum number of repeats of a single fixation, and

clamp forces the result within the range specified. Smaller
values of ∆t mean that fixation durations are more faithfully
represented but that the observed sequences are longer. Nmax
enforces a cutoff value for long fixations so they do not
overwhelm the data.

To handle labels with low prevalence in the data, we
mapped the labels into larger categories. In particular, fix-
ations towards to either the end-effector or the tool were
relabeled as tool fixations, and fixations to elsewhere on
the robot were relabeled as robot fixations (Fig. 2).

2) Goal prediction: For sequence modeling, we use a
hidden Markov model (HMM), a powerful technique for
representing sequence structures. We apply these HMMs
to the processed sequences. Let the set of emissions be
the set of possible labels K. For each goal possibility, we
select all sequences corresponding to trials with that goal.
We then train a hidden Markov model from this subset of
the sequences. This process yields one HMM for each goal
possibility gk.

To perform goal inference on a data sequence, we compute
the score sk of the observed sequence (`0, · · · , `T ) given by
each pre-trained HMM as

sk(`0, · · · , `T ) = log p(`0, · · · , `T ; HMMk). (3)

Then, a goal probability is found by marginalizing over all
the known goals and assuming a uniform prior,

p(gk|`0, · · · , `T ) =
exp sk(`0, · · · , `T )∑
k′ exp sk′(`0, · · · , `T )

. (4)

All HMM operations were performed using the hmmlearn
package3. We set the number of hidden states n = 3,
quantization parameter ∆t = 250 ms, and cutoff value
Nmax = 3 through cross-validation.

While this method requires specifying the number of goals
in advance, it can be extended to different numbers of goals
with appropriate training data. It can also be expanded to
identify intermediate goals for multi-staged tasks. Moreover,
it does not require that the goal objects themselves be
identified among the labels in advance.

VI. RESULTS

A. Data for Evaluation
To evaluate the goal prediction algorithms, we used the

HARMONIC data set [10], which contains eye gaze and
joystick input from participants performing a robot teleop-
eration task. Participants teleoperated a Kinova Mico robot
arm using a joystick to spear one of three marshmallows on a
plate. Participants first reported which morsel they intended
to grasp, then operated the robot using modal control: the
two axes of the joystick mapped to robot x/y, z/yaw, and
roll/pitch in turn, and users cycled through the modes by
pressing a button on the joystick. The study consisted of
24 participants, each of whom performed five trials in four
different assistance conditions. For this work, we include
only trials without assistance that succeeded in the task. This
filtering left 64 trials, with an average of 60 fixations per trial.

3https://hmmlearn.readthedocs.io/en/latest/

https://hmmlearn.readthedocs.io/en/latest/


TABLE I
ALGORITHM ACCURACY METRICS

Accuracy Mean probability Median probability

Aggregate gaze 0.578 0.637 0.827
Sequential gaze 0.671 0.643 0.991
Joystick 0.531 0.486 0.478

Sequential gaze 0.594 0.591 0.986
(by participant)

Predictions by the joystick method (Sec. III-B) were
provided in the data set. The aggregate model was computed
directly. The sequence model was evaluated using five-fold
cross-validation with actual goals balanced.

B. Comparisons

We compare the algorithms on several metrics. First, we
measure the overall accuracy of each algorithm given all of
the trial data. An algorithm is marked correct on a trial if
the probability assigned to the correct goal given all of the
data is strictly larger than the probability assigned to each
other possible goal. If the algorithm assigns the maximum
probability to more than one goal (e.g. the aggregate method
with no goal glances), its prediction is marked incorrect.
Accuracy for each algorithm appears in Table I.

Second, we measure how confident each algorithm is in its
correct predictions. We compute the set of final probabilities
assigned to the correct goal at the end of each trial i,
i.e., {∀i : p(gicorrect|datai)}. We report the mean probability,
the mean of this set. Since these probabilities are highly
non-Gaussian (see Sec. VII-A), we also report the median
probability. These results also appear in Table I.

To validate that this result extends to new participants, we
compute these evaluations for the sequential gaze method
using a different test/train split such that each participant’s
data appears in only one fold. These results, which are
comparable to the results that measure across participants,
appear at the end of Table I.

Finally, we determine how each algorithm’s accuracy
evolves during the trial. We consider the sequence of partial
probabilities of the correct goal. Given a subset of the
data (0, · · · , T ≤ ni), we compute the probability of the
correct goal derived from that subset (p(gicorrect|datai0,··· ,T ).
This partial probability is a function of time T , which is
normalized to the length of the trial. Fig. 3 shows how each
algorithm’s partial probability evolves during the course of
the trial. For each time bin, the width of the bar represents
the proportion of partial probabilities of the correct trial goal
at that particular time. Mass at larger y values indicates more
confident correct predictions, and lines at smaller x values
represent prediction confidence earlier in the trial.

VII. DISCUSSION

In this section, we examine the usefulness of gaze, particu-
larly sequential gaze. First, we discuss the strong bimodality
that appears in the probabilities assigned to the correct goals
when using gaze. We then show that the sequential method
allows for earlier goal predictions than the other methods do.
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Fig. 3. Distributions of probability assigned to the correct goal by each
algorithm during the evolution of each trial. The first data point (at t = 0)
uses the first fixation, so the initial probability is not uniform. Lines connect
probability medians. When the probability assigned to the correct goal is
above 0.5 (denoted by the horizontal dashed line), the classifier is guaranteed
to be correct at that time.

We analyze the sequential method evaluated on a single trial.
Finally, we discuss in what cases the gaze-based methods fail
and how to use them effectively.

A. Sequential Gaze vs. Aggregate Gaze

First, we compare our novel sequential method with the
aggregate baseline. The sequential model has slightly higher
accuracy than the baseline. In addition, Fig. 3 shows that the
sequential model has higher confidence: when it is correct,
its reported correct probability is nearer to one, and when
incorrect, that probability is nearer to zero. In contrast, the
aggregate model is more indecisive, with more trials ending
in equal probabilities assigned to all goals.

Additionally, Fig. 3 shows that both gaze models demon-
strate strong bimodal behavior. This finding evokes the result
found in [44], in which the gaze-based algorithm did not
predict any intention in approximately 30% of cases and
performed well otherwise. Examining the data suggests that
the two modes may be related to the availability of goal-
directed gaze data. In 10% of trials, users made no goal-
directed fixations at all, making classification based on gaze
difficult. In addition, this observation explains the discrep-
ancy in worst-case performance between the aggregate and
sequential algorithms. When none of the user’s fixations are
directed towards goals, the aggregate model makes no pre-
diction (emits uniform probability p = 0.33 over all goals),
while the sequential algorithm generates a prediction anyway
and performs poorly (p ≈ 0 for the correct goal). Thus, the
median probability results in Table I better represent each
algorithm’s quality than the means do.

B. Gaze vs. Joystick: Forecasting Horizon

We next explore whether gaze provides information faster
than the joystick does. Intuitively, we would expect this
result: people look at their targets early in the trial to localize
them [6], whereas joystick input is similar when all goals
are in the same direction from the robot’s current pose.
Particularly for this task, the robot trajectory is similar for
the first half of the trial (as participants reorient the robot
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Fig. 4. Fraction of selected trials that have stabilized on the correct
prediction by progress through the task. Selected trials include those where
the algorithm is incorrect in its first guess without any information, but is
correct at the end. The exclusions resulted in naggregate = 37, nsequential =
31, njoystick = 9. Trials have stabilized when their (correct) prediction stays
the same from that point in the trial through the end. While the small n
for the joystick method precludes strong conclusions, this plot suggests that
distinguishing evidence occurs later in the joystick method than for the
aggregate method, and it comes fastest for the sequential method.

into a spearing position), and the joystick information only
diverges in the second half of the trial.

To measure this prediction horizon, we compute how long
it takes for a correct prediction to stabilize: if a trial is
ultimately correct, what is the earliest time such that the
(correct) prediction persists through the end of the trial? This
measure shows when each algorithm has obtained enough
information to make its final prediction. If more of the trials
have stabilized earlier, we conclude that that algorithm gets
sufficient information early to make a decision. However,
some of the algorithms have inherent priors from the struc-
ture of the data. For example, the sequential method, given
no information, arbitrarily predicts goal 2. If the true value
is equal to this prior, the stabilization time measure usually
shows that the prediction is correct from before the trial
starts. Therefore, we omit trials that predicted the correct
result before receiving any data. Stabilization time measures
how much trial time it takes for the algorithm to have enough
confidence to switch from its initial prediction to the correct
goal. Results appear in Fig. 4.

We find that the sequential method outperformed the other
methods on stabilization time. Median stabilization time
(as fraction of trial time; lower is better) is 32% for the
aggregate method, 8.6% for the sequential method, and 45%
for the joystick method. Unfortunately, our exclusion criteria
left relatively few trials for the joystick case (n = 9), so
it is difficult to draw clear conclusions. However, Fig. 4
suggests that in general, the joystick method does not begin
to stabilize until about halfway through the trial. The gaze
methods, and especially the sequential gaze, can get to the
correct conclusion much faster. This evidence reinforces the
idea that gaze can detect goals earlier in the trial, but more
investigation is required.

C. Understanding the Sequential Model

To understand the benefits of the sequential model, we
examine a single trial in detail. Fig. 5 shows the trained
HMM for recognizing goal 2, represented by the gaze
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Fig. 5. Graph representation of a learned hidden Markov model for
morsel 2. State labels include their prior probabilities, edges between states
represent transition probabilities, and edges to emissions represent emission
probabilities. Edges with p < 0.02 were omitted for clarity.

label morsel 2. States S0 and S1 activate on fixations
directed towards labels tool and morsel 2. In addition,
these states activate slightly when they see morsel 0 or
morsel 1 respectively. This HMM has some possibility of
producing fixations towards the other goal options, so it can
incorporate them in its prediction.

Fig. 6 shows how this model evaluates a single trial. Eye
gaze is mostly directed toward the tool, particularly at the
start of the trial (Fig. 6, middle), and the HMM largely
stays in S1 in response (Fig. 6, bottom). When it encounters
fixations labeled with non-goal morsel 0 at about 50%
of the way through the trial, the model transitions to S0
and incorporates those fixations smoothly. With additional
fixations labeled morsel 1 at 65% through the trial, the
model re-enters S1 and correctly predicts the goal for the
remainder of the trial (Fig. 6, top). In contrast, the aggregate
method is unable to handle these glances towards incorrect
goal candidates, so it fails to recognize morsel 2 as the goal.

D. Limitations of Gaze-based Prediction

While gaze is a powerful signal for goal recognition, there
are two key complications for using it in practice. First, clear
gaze information is not always available. In our data set, six
trials (10% of the data) included no goal-directed glances
at all. People may use other strategies for identifying their
goals, such as their peripheral vision or their memory of the
object location from a previous task. Therefore, gaze may be
better used as a signal of opportunity. In its absence, we must
fall back to an alternate method, such as the joystick-based
model. To explore this possibility, we measure whether the
gaze and joystick algorithms are correlated in their accuracy.
Trials where the gaze gives a correct prediction and those
where the joystick gives the correct prediction show no
strong correlation (χ2(1) = 0.0336, p = 0.854). The results
comparing the joystick and aggregate methods are similar
(χ2(1) = 0.00628, p = 0.937). Thus, the complementarity of
these methods make this combination especially appealing.



The signals can combine their predictions together using
Bayesian combination [18], or we can use alternative meth-
ods that are more sensitive to the data.

Second, gaze information depends on task context. While
the semantic labeling procedure encodes scene information,
it does not clarify why people are looking at a particular
object. People look both at objects they intend to interact
with and objects they are trying to avoid [50]. Therefore,
gaze alone cannot distinguish the role of an object in a task.
Gaze shows that an object is relevant, but other systems are
needed to interpret that relevance. While our approach avoids
this issue, more complex tasks will require handling it.

E. Extensions to More Complex Tasks

While the gaze analysis method presented here succeeds
on this task, we observe that the gaze signal itself may re-
quire more sophisticated analysis to extend to more complex
tasks. If the possible goals are known in advance, the method
here can be extended to an arbitrary number of goals with
only a single HMM by using label remapping in a one-
vs-rest framework. Specifically, train a single HMM on all
labeled runs with the label corresponding to the ground-
truth goal mapped to gtarget and all other goal labels mapped
to gother. Given a new sequence, inference is performed by
performing the transformation once for each possible goal
and evaluating the HMM’s score on each new sequence.
While this method loses some accuracy by aggregating all
goals in a single model and requires advance specification of
the goal candidates, it is adaptable to any number of goals
without retraining. If the goals are not known in advance,
however, an entirely new model must be trained.

For more complex tasks, such as those involving scene
objects that play different roles like obstacles or partial
tasks, the method here will struggle to provide additional
information. This method identifies a particular object that
the user considers important in the task. However, it is unable
to determine why that object is important. For these tasks,
this method can be part of a broader algorithm that also
incorporates information about task context.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a pipeline for using people’s eye
gaze data during teleoperated manipulation to predict their
goals. We show that gaze data benefits from analysis using
sequential methods, which use the sequential nature of gaze
and the non-goal fixations as additional context. We also
find that gaze-based prediction outperforms joystick-based
prediction on average. While the overall gaze accuracy is
high, the signal quality is bimodal, with excellent predictive
quality when goal-directed fixations are available and poor
prediction quality otherwise. Fortunately, the trials where the
gaze performs poorly are not correlated with those where
the joystick performs poorly, so the two prediction methods
complement each other.

Future work from this project can focus on combining
the gaze and joystick signals presented here, along with
other signals. Building a full system that can anticipate
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Fig. 6. Sample trial comparing aggregate and sequential prediction
performance. The top plot shows the output probability assigned to morsel
2 (the true target) during the trial. The second plot shows the gaze labels
supplied to each algorithm. The bottom bar shows the hidden state predicted
by the sequential model as calculated from the entire data run. While the
HMM mostly maintains a single state, the presence of fixations towards
morsel 1 (near 0.5 < t < 0.65) triggers a different hidden state. This
flexibility enables the HMM to incorporate the misleading gaze information.

when each signal will perform well may lead to even better
goal prediction. In addition, this sequential approach can be
applied to other human signals, like body pose, when using
them for intention prediction.

Finally, the full gaze-based shared control system should
be validated in a user study. A full user study requires an
online version of the proposed algorithm and bringing in
study participants to perform the task. While this evaluation
is out of scope of this paper, it is essential for understanding
the effects of gaze-based prediction on robot assistance.
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movement analysis for activity recognition,” in UbiComp, 2009, pp.
41–50.

[39] D. H. Ballard and M. M. Hayhoe, “Modelling the role of task in the
control of gaze,” Visual Cognition, vol. 17, no. 6-7, pp. 1185–1204,
8 2009.

[40] K. A. Turano, D. R. Geruschat, and F. H. Baker, “Oculomotor
strategies for the direction of gaze tested with a real-world activity,”
Vision Research, vol. 43, no. 3, pp. 333–346, 2 2003.

[41] B. T. Sullivan, L. Johnson, C. A. Rothkopf, D. Ballard, and M. Hayhoe,
“The role of uncertainty and reward on eye movements in a virtual
driving task,” Journal of Vision, vol. 12, no. 13, 2012.

[42] L. Johnson, B. Sullivan, M. Hayhoe, and D. Ballard, “Predicting
human visuomotor behaviour in a driving task,” Philosophical Trans-
actions of the Royal Society B: Biological Sciences, vol. 369, no. 1636,
2 2014.
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“Eye–Hand Coordination in Object Manipulation,” Journal of
Neuroscience, vol. 21, no. 17, pp. 6917–6932, 9 2001.


	Introduction
	Related Work
	Shared Control
	Eye Gaze for Goal Inference

	Problem Statement
	Goal Inference
	Benchmark: Joystick-based Prediction
	Gaze for Goal Inference

	Preprocessing the Gaze Data
	Fixation Segmentation
	Semantic Gaze Labeling

	Algorithms for Goal Prediction
	Baseline: Aggregate Gaze Method
	Sequential Method via Hidden Markov Models
	Sequence processing
	Goal prediction


	Results
	Data for Evaluation
	Comparisons

	Discussion
	Sequential Gaze vs. Aggregate Gaze
	Gaze vs. Joystick: Forecasting Horizon
	Understanding the Sequential Model
	Limitations of Gaze-based Prediction
	Extensions to More Complex Tasks

	Conclusions and Future Work
	References

